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The usefulness of Self-consistent perturbation theory and of a variation perturbation treatment 
both in semiempirical form (CNDO/2) is tested by application to hydrogen bonding in water dimers. 
The results are comparable to variational calculations. A splitting of the total energy in various com- 
ponents provides insight into the nature of hydrogen bonding. 

Die Anwendbarkeit yon SCF-St6rungstheorie und eines Variationssti3rverfahrens, beide in 
semiempirischer Form (CNDO/2), wird an der Wasserstoffbrtickenbindung im dimeren Wasser 
gepriift. Die Ergebnisse sind vergleichbar mit Variationsrechnungen. Eine Aufspaltung der Gesamt- 
energie in verschiedene Komponenten vermittelt einen Einblick in die Natur der Wasserstoffbriicken- 
bindung. 

Introduction and Methods of Calculation 

A self-consistent perturbation theory for interacting electron systems, based 
on a perturbation of the Fock-Dirac  density matrix I l l ,  has recently been devel- 
oped [2]. The semiempirical M I N D O  version [3] of this theory was applied suc- 
cessfully to problems in chemical reactivity [4]. It has now been rewritten for 
the C N D O / 2  [5] approximation [6]. The usefulness of such a theory for inter- 
molecular forces is compared to a variation perturbation treatment which makes 
use of zero order SCF-wave functions but is not self consistent. This latter theory 
had been developed by Pople [7] and was applied by Pople and Schofield [8] 
to ~-electron systems. It has been extended to two electron perturbations in order 
to treat interacting electron systems [9] and was programmed for the C N D O / 2  
approximation [10]. 

Both formalisms are based on the same zero order wave function and therefore 
give identical results for the first order energy [2, 4]. Incorporat ion of the change 
in nuclear repulsion gives a first order change of total energy: 

~ E(1) = ~ [ qk qz 7kZ + (14.399/ Rkz -- '/k~) Ck Cz] (1) 
kl  

qk(z) are theexcess charges of atoms k and l of the two subsystems K and L. ~kt 
represents the repulsion of two electrons on a tom k and l at the distance Rkz 
and 14.399/Rk~ is the repulsion of two point charges in eV. Ck(~) are core charges. 
The first term in Eq. (1) depends on excess charges and will be called charge 
interaction, the second term also coulombic in nature includes most of what 
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commonly is considered to be steric hindrance and will be called steric inter- 
action. 

The second order energy in the semiempirical SCF-perturbation theory is 
obtained as the sum of a covalent term (2) and an electrostatic contribution (3) [-4]. 
This is independent of the M I N D O  or C N D O  approximation. 

/ 2 )  
f i E c o v .  = �89 ~ p ,K/~W~L • • V p , L ~  U,LK . . ~  . 1~ .  r 2 ~ - - ~  ~ - ~  , (2) 

lea  ~cv 

fi r,(2) = �89 ~ (Q'k q, + O'tqk) 7kl . (3) ~ e l e c .  
kl 

Both (2) and (3) [ 11] depend on the change in the first order density matrix. The 
change in electron distribution in the subsystems (Q~(,)) should be negligible 
for the interaction of neutral molecules. Therefore (3) should have no significance 
in these cases. 

The second order energy in the variation perturbation treatment differs 
from (2) and (3). According to Pople the perturbed wave function ~p is expanded 
as linear combination of the ground state ~Po and singly excited singlet states. 

~p=a~po+ Y', bs~o~. (4) 
s > 0  

The second order energy is given by Eq. (5) where H' is defined as in Ref. [2]. 1 

c5E(2) = _ ~ (WolH'Iws) (wsIH'IWo) (5) 
8>0 Es-  Eo 

Carrying this through one obtains in the CNDO/2  approximation: 

o c t  I l n o c  

o c t  u n o e  

~ [ ~  ]2 , - '  (6b) - 2 Cp~C, ufl~, Ep 

o c t  u n o c  

2 ~ ~ [~C,,Co,;~tOz]ZE: -~ (6C) 

o e c  u n o c  

2 ~ ~ [~CpaCoxT,u, qk]2Eg -1 (6d) 

The terms (6a) and (6b), being a function of resonance integrals flux, express the 
covalent interaction of the systems K and L analogous to (2); (6c) and (6d) are, 
similar to (3), electrostatic in nature. All terms are derided by an excitation 

A comment on the definition of H' may be useful at this point. As was pointed out in Ref. 2 
tp0 is not an eigenfunction of H o. This difficulty has also been recognized by others and has been 
solved by using projection operator techniques [Yaris, R.: J. chem. Physics 44, 3894 (1966); Murrell,J.N., 
Shaw, G.: J. chem. Physics 46, 1768 (1967)1. Kreek and Meath [J. chem. Physics 50, 2289 (1969)J 
point out, that a satisfactory intermolecular perturbation theory can be formulated by neglecting 
electron exchange. This assumption is also a consequence of the CNDO approximation which is used 
in the present treatment. 
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energy (7). 2 For (6a) and (6b) this is a charge transfer excitation energy, for (6c) 
and (6d) a local excitation energy. It is interesting to note that the significance of 

E} = <tpi~jl Ho I ~Pi~j> - <P0 I Uo [ ~Po> �9 (7) 

(6a) and (6b) should be the greater the lower the charge transfer excitation energies. 
This parallels results of independent electron models where the excitation energy 
(7) is replaced by the differences of orbital energies. 

Application to Hydrogen Bonding in Water Dimers 

The hydrogen bond of water dimers is by no means a new subject as the 
a b  i n i t i o  [11-14, 23] and semiempirical [-t5-18] calculations demonstrate. The 
energy and geometry of possible intermolecular complexes has been studied 
extensively. The aim of this communication is to show the usefulness of SCF- 
perturbation theory for hydrogen bonding. Perturbational approaches had been 
deviced by Bratoz [-19], by van Duijneveldt and Murrell [20], and van Duijneveldt- 
van de Ridt and van Duijneveldt [24]. Bratoz evaluates the linear water hydrogen 
bond using as a basis the occupied and unoccupied hydroxy bond orbitals and a 
lone pair of the oxygen atom of the hydrogen acceptor in a colinear p-orbital. 
The problem is then solved analogous to our variation perturbation treatment. 
His final formula resembles the sum of our first and second order energy. It does 
not contain a second order electrostatic term and treats the short range repulsion 
(term 2 in Eq. (1)) by an exponential with empirical parameters. The difficulty 
in assessing the different quantities caused this theory to remain a qualitative one. 
Van Duijneveldt and Murrell [20] also restrict themselves to the linear O. . -H--O 
fragment. The free electron pair occupies a s p  2 - hybrid orbital. A long range 
perturbation theory for small intermolecular overlap [21] is applied to this 
model. However, this theory does not take proper account of short range inter- 
actions. For the hydrogen bond it does not lead to an energy minimum. Van 
Duijneveldt-van de Ridt and van Duijnevetdt [-24] have extended this latter 
theory in order to account for this failure. Recently Santry and Bacon [22] 
proposed an SCF-perturbational approach to treat hydrogen bonding similar to 
our theory [-2, 4]. 

In our calculations we followed earlier investigations for the linear, bifurcated 
and cyclic water dimers [14]. The energy components are listed in Table 1 for 
the SCF-perturbation treatment and the variation perturbation calculations.The 
linear arrangement has been compared to a direct CNDO/2 calculation. The 
total SCF-perturbation energies agree within 1-2% (convergence limit for the 
maximum change of an element in the 1. order density matrix was < 0.001). 
The value of the second order variation perturbation energy in the linear complex 
is smaller than the SCF-value. This becomes more pronounced the closer the 
separation of the two molecules, i.e. the higher the perturbation. 

The superposition of the repulsive first order energy and the attractive second 
order energy yields potential curves which are almost identical to full variational 
calculations. Yet the perturbation calculations provide more insight. The first 

2 We use the following index convention: u,v:  MO's in K; p,q:  MO's in L; #,v: AO's in K; 
to, ;l: AO's in L 
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Fig .  1. Geometries of the linear, bifurcated and cyclic water dimers 

order energy and the second order energy both can be split into two components. 
This has been done for the SCF-results in Fig. 2. The picture is dominated by the 
steric and the covalent contributions. The charge interactions are small (of the 
order of 1-2 kcal/mole) and do not show significant distance dependence. The 
second order electrostatic effects ((3), (6c) and (6d)) are negligible. They amount 
to 1-2 % of the second order energy and are omitted from Fig. 2. The most stable 
structure is the linear. Even though the total energy for the other complexes is 
comparable the individual components differ appreciably. 

Table 1. Perturbation energies for the linear (a), bifurcated (b) and cyclic (c) water dimers of Fig.  1 

in kcal/mole. SCF=se l f  consistent perturbation theory; VP=Variation perturbation theory; 
Ec~Do/2 = d i r e c t  C N D O / 2  calculation 

R(A)  cSE C~) -~E ~) ~r~2) tot~ tot.l 
S C F  ~ ~vp  _~ E SCF Evp  ECNDO/2 

a 3.0 t . 290  - 3 .952 -- 3.838 - -2 .662  - 2 . 5 4 8  

2.8 3.651 - 8.001 - 7.703 - 4 . 3 5 0  - 4 . 0 5 2  

2.53 13.137 - 19.306 - 18.352 - -6 .168  - 5 . 2 1 5  

2.4 23.742 - 2 8 . 4 2 5  - 2 6 . 8 1 7  - 4 . 6 8 3  - -3 .075  

b 3.0 0 .034 - 1.041 - 1.045 - 1 . 0 0 7  - 1 . 0 1 1  

2.8 0.497 - 2.059 - 2 .064 - 1 . 5 6 3  - 1 . 5 6 8  

2.44 3.703 - 6.303 - 6.315 - 2 . 6 0 0  - 2 . 6 1 2  

2.4 4 .470 - 7.063 - 7.077 - 2 . 5 9 3  - 2 . 6 0 8  

c 3.0 0.109 - 0.635 - 0 .636 - 0 . 5 2 5  - 0 . 5 2 7  

2.4 2.786 - 4.651 - 4.616 - 1.866 - 1.830 

2.25 5.390 - 7.432 - 7.376 - 2 . 0 4 2  - 1 . 9 8 6  

2.2 6 .690 - 8.663 - 8.601 - 1 . 9 7 3  - 1 . 9 1 1  

- 2 . 8 1 1  

- 4 . 4 6 8  

- 6 . 2 5 5  

- -4 .844  
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F i g .  2. Steric interactions (11), charge interactions ( ~ )  and covalent contributions ( 0 )  for the linear 
( . . . .  ), b i f u r c a t e d  ( ) and cyclic ( . . . . . .  ) water dimers of F i g .  t 

The SCF-perturbation theory allows a further splitting of the second order 
energy in contributions from the individual atomic orbitals of the subsystems [4]. 
This has been done for the 2s 1 and 2px 1 atomic orbitals of the electron pair donor 
(for numbering see Fig. 1), the 1% atomic orbital of the bridged hydrogen atom 
and the 2px 4 atomic orbital of the second water molecule in Table 2. A comparison 
shows that these energy components amount to almost all of the second order 
energy. The variation perturbation theory elucidates that charge transfer inter- 
actions from the electron pair donor to unoccupied molecular orbitals of the 
hydrogen donor are responsible for more than 90% of the second order energy. 

This detailed analysis justifies nicely the models of Bratoz [19] and of van 
Duijneveldt and Murrell [20]. Yet their approaches have limitations. Besides the 
restrictions mentioned earlier they are not capable to consider non linear struc- 



310 R. Sus tmann  and F. Vahrenholt:  

Table 2. Second order contributions (kcal/mole) by atomic orbitals of the linear structure. For num- 
bering and coordinate system see Fig. 1 

R(A) 2s~ 2p~1 lss 2px4 Sum 

3.0 -0 .705  -1 .204  - 2.139 0.126 - 3.922 
2.8 -1 .440  -2 .426  - 4.407 0.309 - 7.964 
2.53 - 3.517 - 5.779 - 11.026 1.027 - 19.295 
2.4 - 5.209 - 8.429 - 16.623 1.792 - 28.469 

tures. Therefore the influence of other atoms or groups in a molecule can not be 
assessed. 

The cyclic and bifurcated structure are both less stable. The steric energies 
are more favourable because the intermolecular distances of the hydrogen and 
oxygen atom are greater. However, the covalent stabilization also decreases. The 
variation perturbation treatment traces this back to smaller charge transfer 
interactions from the oxygen lone pair to the unoccupied orbitals of the hydrogen 
donor. 

Conclusions 

The perturbational evaluation of water dimers not only provides comparable 
results to variation calculations but furthermore yields insight into the factors 
determining the most stable structure. The splitting of the total energy into four 
components reveals that coulombic forces (due to the polarity of the molecules) 
are not important in determining the most stable complexes. Rather the interplay 
of steric and covalent contributions gives rise to the observed minimum structure. 
The variation perturbation theory yields good results as long as the perturbation 
remains small. It has the advantage of shorter computation times and the pos- 
sibility of interpretations similar to independent electron perturbation theory. 
The SCF-CNDO/2-perturbation program, the variation perturbation program 
will be available from QCPE. Further work on hydrogen bonding will be published 
in due time. 
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